The Brain: ZenUniverse 1.0


“Tao can Tao not Tao”

Lao Tzu

Since reading the work of Clare W. Graves of Spiral Dynamics fame, reflecting on the work of all the people mentioned in my Blogroll as well as my recent foray into Zen I attempted to review and revise my work on the assortment of frameworks I had come up with. As I was making revisions it dawned on me that nature had done all the work already.

“Outside this office, Business as Usual;

Inside this office, Thunder and Lightning.”

Colonel John Boyd

I decided to take another angle of attack.  I realized I was dealing with entities, hierarchies, attributes and relationships and one thing Boyd overlooked, results, in two dimensions not one.  You may remember this graphic:


I realized I would have to take the Boyd Pyramid a bit more seriously.  And I have.  I compared Boyd’s work to Einstein’s, saw the correlations and what I think is a flaw.


“The only real valuable thing is intuition.”

Albert Einstein


The first thing I want to address is a misconception regarding solids.  It was one Plato made as well as R. Buckminster Fuller.  There are not five stable solids.  There are six.

The mistake Plato and R. Buckminster Fuller made was to demonstrate the stability of a triangle composed of three rods to their students while saying that the simplest solid in three dimensional space is the tetrahedron.  He didn’t realize the triangle in his hand was the simplest solid.  The triangle is a two sided three vertex solid that is the simplest enclosure of space.  Our eyes use two of them to locate an object and calculate distance.

Considering the above solid and the Platonic Solids we have six three dimensional closed network structures as illustrated below:


Take note of the stability of each of the solids.  What this means is that the triangulated solids are able to support themselves structurally, while the non-triangulated solids collapse.

What I realized regarding the work of Einstein and other physicists is they did not regard the various phases of matter as important.  However the states of matter are important.  Each state from the triangle up to the icosahedron as illustrated above are higher states of order.  Yet, each state of order is fundamental to the universe in which we live.  And all are simply phases of what I call the “ZenEntity”.


I decided after looking at what I had found regarding the solids to reject contemporary empirical conventions and simply address one thing.  We have six fundamental ordered states.  After several billion years of evolution would not all organisms have what they require to function in response to all of the six states in their niche?

My next question was, “How do I represent the phenomena I had encountered as a network?”

In my profession there are data architects, database designers, data modelers, database administrators, data entrists, data analysts, database developers, database programmers database analysts, data warehouse architects, data warehouse analysts, data warehouse developers, Extract-Transform-Load architects, ETL analysts, ETL designers, ETL developers, ETL programmers, Business Intelligence architects, BI analysts, BI designers, BI developers and so on.  However, I was never satisfied with any of these position titles.  So, I coined one myself: data designer.  I was of the opinion no matter how much data was out there, it was finite.  Zero and Infinity were very useful, but they violated the laws of thermodynamics.  I saw seven distinct phases of order in the universe and only saw transitions from one state to another.  I could design according to those states.

This led me to explore how I could represent the six states.  I studied and applied a variety of project lifecycles such as System Development Lifecycle, Extreme Programming and Rapid Application Development, joint application development.  I had learned various enterprise frameworks such as Zachman and TOGAF, modeling techniques like UML, the various generations of programming languages, data structures, network topologies, organizational concepts, rule based systems, event based systems, data based systems, user centered design, goal directed design, location based services, pattern languages, service oriented architecture, hardware architectures and many more.  I studied English, Greek, Latin, Anglo-Saxon, German and French to see how I could develop a consistent taxonomy as well.

Ultimately I concluded that a majority of the people out there working on these problems had abandoned the basics for pet concepts.  They had no idea how many entities there were.  They had no idea how those entities should be related.  So I took it upon myself to identify all the relations that were applicable and came up with the following:


The associations are as follows:

  1. Pattribute: a triangle entity
  2. Battribute: a one to many relationship describing the association between a triangle and an tetrahedron
  3. Attribute: a one to one relationship describing the association between a triangle and a hexahedron
  4. Nattribute: a many to one relationship describing the association between a triangle and a octahedron
  5. Lattribute: a recursive many to one relationship describing the association between two icosahedrons and one icosahedron
  6. Mattribute: a recursive one to one relationship describing the association between two dodecahedrons

As you can see, the network is asymmetrical and allows for Node, Lattice, Tabular, Lattice, Linear; Lattice arrangements.  Note that since all of the entities are simply states of a single “ZenEntity” none of the states are independent from each other in the network.


Now, that we have established the solids and how they are interconnected we can look at what the actual phases of the ZenEntity are.  Each of these phases are recognized in physics, however I have not come across any discussion of the possibility that they are together a set of fundamental phases.


Usually, we see Space, Time, Energy and Mass described in Einsteinian classical physics.  We also have discussions of Ions, Gases, Liquids and Solids as states of matter.  But we don’t see them together.

  1. Energy: a three dimensional coordinate system
  2. Time: a connection between one three dimensional coordinate system and two four dimensional coordinate systems
  3. Ion: a connection between one three dimensional coordinate system and one six dimensional coordinate system
  4. Gas: a connection between two three dimensional coordinate systems and one eight dimensional coordinate system
  5. Liquid: a connection between two twelve dimensional coordinate system and one twelve dimensional coordinate system
  6. Solid: a connection between two twenty dimensional coordinate systems

Next, we will see how these states are all very important to our sensory systems.


As well as the phases there is another way to look at the six solids.  This is in the Latinate language of the six states.  The states differ from  the phases in that they deal with the essence or source of each of the states.


The essence of each of the states is as follows:

  1. Pattern: Father
  2. Battern:  Hold
  3. Attern: Give
  4. Nattern: Birth
  5. Lattern: Milk
  6. Mattern: Mother


Now, I am going to introduce you to some friends of mine.  I call them “Zen Sensors”


As you can see each ZenEntity State has a coresponding human sensory organ:

  1. Eye: detect events
  2. Ear: detect pressures
  3. Nose: detect plasmas
  4. Throat: detect molecules
  5. Jaw: detect organics
  6. Body: detect inorganics


Next, we have for your viewing pleasure the standard interrogatives and how they correlate:


I found this interesting, because I spent a great deal of time resisting the order of these interrogatives.  Finally, I just went along and found ultimately the order does make perfect sense.  It is an acquired taste.

  1. Eye: Who: Identification
  2. Ear: What: Objectification
  3. Nose: Where: Location
  4. Throat: When: Chronation
  5. Jaw: Why: Rationation
  6. Body: How: Function

If you read enough Anglo-Saxon it makes sense.


Having considered the Entities, Associations, States and Sensory Organs, let us now look at how this relates to a hemisphere of the brain:


The above illustration shows the left hemisphere of the brain and the major regions.  They are color coded to correspond to the fundamental states I have described.  You can also see the corresponding sensory organ as well as the corresponding network structure in the region:

  1. GREEN: EYE: OCCIPITAL LOBE: visual center of the brain
  2. YELLOW: EAR: TEMPORAL LOBE: sensory center of hearing in the brain.
  3. SKY: NOSE: BRAINSTEM: control of reflexes and such essential internal mechanisms as respiration and heartbeat.
  4. BLUE: TONGUE: PARIETAL LOBE: Complex sensory information from the body is processed in the parietal lobe, which also controls the ability to understand language.
  5. RED:  JAW: FRONTAL LOBE: control of skilled motor activity, including speech, mood and the ability to think.
  6. ORANGE: BODY:  CEREBELLUM: regulation and coordination of complex voluntary muscular movement as well as the maintenance of posture and balance.


Everything is great so far, but there is the fact that there are two hemispheres to the brain and they interact through the Corpus Callosum which I claim is where the self resides.  One of the interesting things about my study of Latin is that I discovered most questions actually required a two part answer.  This answer would be composed of an Archetype and a Type.  After reading Jill Bolte Taylor’s book, My Stroke of Insight and listening to her account of her perceptions while the left hemisphere of her brain was being shut down by an exploded blood vessel, it became apparent to me that the left hemisphere of the brain contained the Types the Latin language required and the right hemisphere of the brain contained the Archetypes.  It was necessary to create a two axis model to accomodate a brain with two hemispheres:


Each of the light colored cells in this table represent a connection between one coordinate system association (row) and another coordinate system association (column).  This accounts for the broad variety of properties we encounter making the states we experience.

There are actually not one or two, but four directions you can take on the above table.    Top to Bottom is right hemisphere deduction.  Bottom to Top is right hemisphere induction. Left to Right is left hemisphere deduction.  Right to Left is left hemisphere induction.

This is a physiological model of human perception that I have arrived at.  Our current definitions of dimensionality are incorrect.  Each state has its own dimensionality, its own associations, its own sense organs, its own region of the brain and the brain two hemispheres connected by the corpus callosum.  If the work of Dr. David Bryson on Physical, Decisional and Perceptual Learning is right, then deduction happens during waking and induction happens during sleeping.

This is not a complete model by any means as it does not deal with scale-free networks.  Or does it?

But to this point, that is the Zen Universe.


Posted in Uncategorized. Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , . 5 Comments »

Icons: Systema Iconic Language: Part IV


I have been thinking about all I have read to this point and something occurred to me this evening.  There are no such thing as nodes and links.  There are only equilibrium and non-equilibrium states respectively.  Newtonian Thermodynamics only describes equilibrium states.  It does not account for the transition between states when equilibrium does not exist.  So it is with all networks.

When you navigate the web, you are actually moving from one HTML equilibrium state to another HTML equilibrium state.  The page metaphor is concealing the conceptual character of the process.

Back to Basics

The web navigation buttons on a browser are also deceptive.  They do not reveal the logical consistency between the navigation of hypertext networks and goal networks, contact networks, service networks, product networks, location networks, event networks and unit networks.  The consistency between the many forms of media is also concealed by not recognizing that all forms of media are networks transitioning between equilibrium and non-equilibrium states.  It is important to recognize that any form of process or data structure is really a network, even relational databases are simply lattice networks.


The above Icons are the only ones you need to deal with “step” and “loop”, two of the three “linear” processes for navigating any network.  In reality there is no such thing as a linear network.  There is only a path through a set of equilibrium states connected by these non-equilibrium states.  The remaining “decision” is not a binary decision, but a case or switch which is represented by hyperlink icons.

In reality, with the option to back track and break continuity by creating new browser windows, navigation of the web is much more like Prolog than say Basic or C.

It is that simple.  The above icons are the universal icons for navigation of any network, the rest irregardless of conceptual and physical meaning are hyperlinks.

I think it is significant to indicate the target state for hyperlinks through use of icon background shape and color, and to indicate target context through the use of icon foreground content.  This would make hyperlink icons much more communicative and universal.  As also discussed, hyperlink content could be presented as picticons (picture icons), graphicons, (graphic icons), liticons (text icons), sonicons (sound icons), anicons (animated icons) or vidicons (video icons) that exhibit proscribed behavior when rolled over.

Universe: Hexahedron Theory

Hexahedron Schema:

  1. 4 Axes are Dimension Particle Sets
  2. 8 Vertexes are Space Particle Sets
  3. 12 Edges are Force Particle Sets

Additional Schema Components:

  1. 4 Axial Plane Sets
  2. 6 Edge Plane Sets
  3. 16 Axial Plane Triangulation Sets
  4. 24 Edge Plane Triangulation Sets

Look at the vertexes of the hexahedron as entities.

Entities are Sequence->Value->Type

Look at the edges and axes of the hexahedron as associations.


are: SourceEntity->VerbEntity->TargetEntity

or: SourceAssociation->VerbEntity->TargetEntity

The instances for the entities and associations are the sets we are working with.

The key is the universe is composed of particles of a broad variety.  But every particle is simply an association in the form of a set.  The lowest order particles are event and point.  They are one dimensional particles.  All subsequent higher dimension particles can be reduced to a subset of these particles.

I have revised my theory to include the observer in the system.  I am of the opinion that the observer is not unary but binary having two hemispheres to the brain.  Position and Velocity are composed of sets not points and are observed separately by the ordinal and cardinal hemispheres of the observer.  Consequently, the universe is not probalistic, but wholly deterministic.

Where – When : Space – Time

Sequa is an ordinal point set while frequa is a cardinal event set.

What – How : Mass – Light

Quala is an ordinal sequency set while Quanta is a cardinal frequency set..

Why – How Much :  Gravity – Energy

Grava is an ordinal quality set while Erga is a cardinal quantity set.

Who – Whom : Ordinality – Cardinality

Orda is an ordinal gravity set while Erga is a cardinal energy set.

I think there are even higher order entities and associations, but I have still to work them out.

Framework for a Real Enterprise

It was Peter Drucker who revealed undeniably that business was a science that could lead to predictable results.  The way he did so was by collecting and systematizing all the knowledge he could gather on the subject and then testing hypotheses.  After much deliberation on the science of systems and the science of business.  I present the Physics Framework above and the Enterprise Framework below.  As one physics Nobel laureate said, “If you aren’t doing physics, you’re stamp collecting!”

I am working to refine my framework table for a lay audience. It is a vocabulary for a business system. Like the Linnean system, by using the intersection of the row and column (two terms) I can identify any operation of the system. Still needs work, but its getting there.

It is based on an associative (node and link) architecture not a relational (table and relationships) architecture.

At first glance this might be regarded as a Zachman Framework.  The columns by convention are called focuses.  The rows called perspectives.  The interrogatives make up the column header.  John Zachman offered some poorly chosen row headers which I’ve replaced.  There are two major differences.  First, it requires an additional focus as part of the enterprise, the Market which is measured in potential profit.  It’s time for the academics and bureaucrats to stop turning up their noses to the source of their existence:  a market that will pay in currency to fatten their budgets.  Second, REVISE, the nodes, are something obvious to Einstein; RELATE, the links, something obvious to Drucker (remember the links are verbs); REPORT, the node and link attributes, should be obvious to Thomas Jefferson; RECORD, the databases, to Carnegie; REGARD, the datatypes, to Turing; REPOSE, the ordinality, which remembers whats related to what, REVEAL, the cardinality, full of exceptions to the enterprise.


With this diagram I am eating a considerable amount of my previous work with the icons as well as a few concepts.  The reason for this is I am discovering the logic behind interrogatives that are not commonly used that are essential in the logic of system design.  The first row is the interrogatives (questions).  “Whuch” is how much.  The second row are my rearranged icons.  The third row are my Greek terms for the solutions.

Physics: Observer as a State

At Home In The Universe is a landmark piece of thinking by Stuart Kauffman from the Institute for Biocomplexity and Informatics at the University of Calgary, Canada.  Stuart through the application of Boolean networks, chaos theory, biology and biochemistry makes a profound hypothesis:  Life is a higher level of order achieved though a natural phase change.  In otherwords, the “observer” that Einstein kept out of his equations belongs there as every living thing exists as another state in the equation.  The observer is part of the cosmic system.

There were two things that I considered a crucial flaw in Stuarts work.  First, he talked about a three state system:

  1. The chaotic state
  2. The edge of chaotic state
  3. The ordered state

but he always looked at it as a two state system with the edge of chaotic state balancing on the singularity of the phase change between chaos and order.

This slavishness to a Boolean networks keeps him from seeing another, what I consider, obvious possibility.  Stuart’s light bulb metaphor should have trinary bulbs not binary bulbs–a trinary network.  Like a gas, liquid and solid–the three states of matter– there is a chaotic, ordered and inert state with life residing in the ordered state between two phase transitions (I wonder about how chaos theory would explain the plasma state).

I don’t know if his use of Boolean rules ever provided for this possibility.  It would have resolved many of the challenges he faced and documented in his book.

The second thing I wondered about is he regarded a tightly coupled system as chaotic and a loosely coupled system as ordered.  The logic seems backwards to me.  Is not a solid tightly coupled and orderly and a gaseous system loosely coupled and chaotic?  I will have to delve more deeply into the concepts of chaos theory before I agree.

As a final thought, we could take the six interrogatives and turn them into a new equation:

L * E = O * M * c ^ 2

Where L is Logic, E is Energy, O is Observer, M is Mass and c is the distance (d) light travels over time (t).

Logic would be defined as the rules that correctly describe the cosmic system.  Einstein referred to this logic as “The Old One”.  My hypothesis is our understanding of these rules, the logic of the observer, is a state as well.

Novation Divergence

When we reach a plurality two things happen:

  1. The current product/service begins its life cycle descent–denovation
  2. A new product/service begins its life cycle ascent–new innovation

The interesting aspect of this is the innovator and the denovator at the divergence are not necessarily the same individual.

Let’s look at the plot:

Here you can see the divergence. This is simply a divergence of the frame of reference not of the observer.

Interesting, this has me thinking about OODA Loops. It also has me thinking about Judo.