Good Design: System International Units

fullerines

I have been working to accept nature as it is. I found myself looking at the System International Measure Units:

1. Prediction – Radiation – Mission – Art – Visual – Eye – Video – Candela
2. Harmonization – Vibration – Strategy – Science – Tempal – Ear – Audio – Celcius
3. Synchronation – Duration – Tactics – Design – Signal – Nose – Events – Second
4. Information – Distance – Operation – Engineering – Gradual – Throat – Graphics – Metre
5. Validation – Mass – Product – Skill – Technical – Jaw – Text – Kilogram
6. Transaction – Current – Service – Training – Clerical – Body – Equations – Ampere
7. Satisfaction – Molarity – Price – Education – Medial – Thumb – Numbers – Mole

I am of the opinion, if we stick to the basics we will develop better systems.

Links:

Creative Commons: Proposed Protection Categories

logo-creative-commons

Right now, Facebook members are campaigning for Facebook/Creative Commons integration.

I fully support this.

I think facebooks credibility would go through the roof.

I think creative commons would become the defacto standard of content protection.

I think everyone on the web would exercise freedom of expression with more confidence knowing they own their expression.

However, I think creative commons should change its conditions to make it more accessible.

I propose the following, based on the International System of Units

who: anonymous/originator/derivator

what: unit/series/collection

when: once/duration/forever

where: private/group/public

why: loss/balance/profit

how: as-is/constructive/destructive

how much: one/two/many

That should satisfy everyone.

I have forwarded this proposal to Creative Commons.

Link:

Universe: The Czerepak Framework

I just visited the archive of Tim Brown’s Design Thinking Blog and came across the following post:

Definitions of design thinking

Tim Brown » 07 September 2008 » In design thinking »

In my HBR article I gave a ‘definition’ of design thinking. It was:

Design thinking can be described as a discipline that uses the designer’s sensibility and methods to match people’s needs with what is technologically feasible and what a viable business strategy can convert into customer value and market opportunity.

On reflection this is a narrow description that focuses on design thinking’s role within business. The next sentence that I wrote.“….design thinking converts need into demand” , which I borrowed from Peter Drucker, broadens things out a bit but still assumes an economic motivation.

I am grappling with two questions as I think about this.

1. Is there a general definition of design thinking?

2. Is it useful to have one?

I think Tim has something very good here and suggest that the following would be a further breakdown of his classification:

  • Viable: Business
    • How Much: Quality
    • How Many: Quanitity
  • Feasible: Technology
    • What: Material
    • How: Process
  • Desirable: Human
    • Why: Goal
    • Who: People

Obviously, if you have been following my blog, you can see the same pattern appearing and reappearing as we explore other’s concepts.  The six interrogatives continue to reassert themselves.  However, I think I finally nailed one more aspect on the head.  I hate to say it, but it came to me in a dream about working on a programming project:

  • Reliable:
    • Where: Location
    • When: Timing

Quantity and Quality are two aspects of design/system thinking that are continually overlooked by academics and specialists, but not business people.

Interestingly enough this perspective is not new.  Clayton M. Christensen in his book The Innovator’s Dilemma discusses a four part model that fits nicely with this:

  1. Availability
  2. Compatibility
  3. Reliability
  4. Cost

I consider, Clayton’s the most empirical ordering.  Consequently, I would like to mesh Tim’s, Clayton’s and my perspective into the following:

  1. Feasibility: Technology
    1. How
    2. What
  2. Compatibility: Personality
    1. Why
    2. Who
  3. Availability: Market
    1. Where
    2. When
  4. Viability:  Business
    1. How Much
    2. How Many

Now, looking at this I am reminded of Malcolm Gladwell’s book, Tipping Point, and it adds the following character to the model:

  1. Feasability: Mavin
    1. How: Processes
    2. What: Materials
  2. Compatibility: Connector
    1. Why: Goals
    2. Who: People
  3. Availability: Salesman
    1. Where: Locations
    2. When: Schedules
  4. Viability: Customer
    1. How Much: Costs
    2. How Many: Units

Universe: A Multi-Dimensional Medium

Let’s do a thought experiment.  I want to take design thinking and abstract it to a system.

doble-vortice

Imagine that there are no solids, liquids, gases or plasmas or particles.  That the Universe is a fluid medium swirling between equilibrium and non-equilibrium in multiple dimensions.  What we perceive to be solid, liquid, gas or plasma are not states, but intersections of dimensions that describe interdimensional vortices.  Energy is the intensity of a vortice.  Mass is a vortice of a set of dimensions.  Light is a vortice of a set of dimensions.  All of the particles are vortices of sets of dimensions.  Each influence the other based upon which dimensions they are composed of.

R. Buckminster Fuller clearly states in his work that we should perceive the systems as finite four dimensional spheres.

There are only four fundamental states:  vortice verge, vortice converge, vortice emerge, vortice diverge.

iconuniversestates1

Everything we perceive are combinations of these vortice states.  The states are +/- vortice yaw, +/- vortice pitch, +/- vortice roll.

If any vortice is spiraling toward you it is positive, if any vortice is spiraling away from you it is negative.  By definition, no vortice can be stationary with respect to you.

There are only eight fundamental vortices: How, What, Why, Who, When, Where, How Much, How Many.

This gives us the following eight vortice, four state table:

iconuniverse13

Take the time to look at the terms defining each of the white cells in the table.  Each row is the addition of a dimensional vortice.  For example: Each additional “when” vortice is another separate clock.  Each additional “where” vortice is another separate radius.  All of them are factors in a system or a design.

And even this representation is inaccurate.  If we consider fractal geometry and chaos theory, there are no points, no straight lines, no arcs, no planes, no circles, no polygons, no polyhedrons, no spheres, only vortices that are above, within or below our range of perception.  Space cannot be filled with any geometric shape.  Everything is composed of vortices–spirals.

We have to abandon the flat world, flat space models we currently cling to.  The world and the universe are not infinite planes.  The world is a finite island of non-equilibrium in a predominantly equilibrium universe.

And that is it, the Czerepak (Chair-eh-pak) Framework.

Copyright (c) 2008 Grant Czerepak.  All rights reserved.

Links:

Systema: Operation, Tactic, Strategy

entityassociation2

iconsrelate

iconsenterpriserelate

Icons: Systema Iconic Language: Part I

In this series of posts I will be exploring the concept of an iconic language built upon the vocabulary I have been incrementally creating as part of the Systema Framework.

Abstract Relationships

enterpriserelateabstract

Concrete Relationships

enterpriserelateconcrete1

I have worked with icons before and this is a revisit of some of those ideas as well as modifications.

Apport Icon Set

The Apport icon set defines the entities that can exist in a system:

iconscreate2

Accord Icon Set

The Accord Icon set defines the relationships that can exist in a system:

iconsrelate2

Below is a cross product of the Apport and Accord Icon sets:

enterpriserelateicons2

Record Icon Set

I am sure that the icon set below is familiar if you have followed my blog.

iconsrecord1

Note that the cross product below is only for the entities themselves and not for their relationships.

enterpriserecordicons

Properly utilized, an iconic language would allow you to build sentences out of the individual icons interactively.

I plan to continue to think about this subject further and will update as I go along.

Below are links to web pages and pdf documents I have read so far on the topic:

Systema: Seven Hats, Seven Links

watch-parts1

Parable of the Watchmakers

There once were two watchmakers, named Hora and Tempus, who made very fine watches. The phones in their workshops rang frequently; new customers were constantly calling them. However, Hora prospered while Tempus became poorer and poorer. In the end, Tempus lost his shop. What was the reason behind this?

The watches consisted of about 1000 parts each. The watches that Tempus made were designed such that, when he had to put down a partly assembled watch (for instance, to answer the phone), it immediately fell into pieces and had to be reassembled from the basic elements.

Hora had designed his watches so that he could put together subassemblies of about ten components each. Ten of these subassemblies could be put together to make a larger sub- assembly. Finally, ten of the larger subassemblies constituted the whole watch. Each subassembly could be put down without falling apart.

sevenhats2.jpg

For the longest time I have been playing with interrogatives and associations.  Now, I think I finally have a complete representation and taxonomy.

Abstractly, it looks like the following:

enterpriseabstract3

Concretely, it appears as follows:

enterpriseseven5

As I mentioned in my earlier post, I was not satisfied with a six interrogative, four association model.  Consequently, I worked to resolve this and came up with the table above with the interrogative columns (seven hats) and the associative rows (seven coats).  I also came up with the data model below:

enterprisefact1

My hypothesis is, used correctly, the above data model can address all relational/dimensional requirements.

Related Posts:

Systema: Six Interrogatives and Four Associations

enterpriseassociations2

Since I have been thinking about the dimensionality of Einstein’s universe and the associations within the six interrogatives, it has led me to wonder about how the two fit together.  I have expressed it in the above diagram.  The association types are the rows and the interrogatives the columns.  We immediately have four dimensions for each interrogative.  Food for thought as I think about my current reading on network theory.

This hearkens back to a model I did in June 2007:

enterprisehybrid

You can see by using an association table for each interrogative this model provides for all the possible associations within the ontology.  However, I do not think this model is complete.  I’ll discuss that a bit later.